如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
求数列的前项和.
已知设P:函数在R上单调递减; Q:不等式的解集为R,若“P或Q”是真命题,“P且Q”是假命题,求的取值范围.
如图,在ΔABC中,D、E为边AB的两个三等分点,=3a,=2b,求,.
已知A(—2,4)、B(3,—1)、C(—3,—4)且,,求点M、N的坐标及向量的坐标.
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD。 (1)求证:直线AB是⊙O的切线;(2)若tan∠CED=,⊙O的半径为3,求OA的长。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号