提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
(1)解方程:
(2)已知集合A=(-1,3),集合B=集合C=
并且
,求a的取值范围.
已知函数对任意的
恒有
成立.
(1)当b=0时,记若
在
)上为增函数,求c的取值范围;
(2)证明:当时,
成立;
(3)若对满足条件的任意实数b,c,不等式恒成立,求M的最小值.
已知数列的前n项的和为
,且
,
(1)证明数列是等比数列
(2)求通项与前n项的和
;
(3)设若集合M=
恰有4个元素,求实数
的取值范围.
已知圆的圆心在坐标原点O,且恰好与直线
相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足
(其中m为非零常数),试求动点
的轨迹方程
.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与
垂直的直线
与曲线C交于 B、D两点,求
面积的最大值.
在中,角A、B、C的对边分别为a、b、c,S是该三角形的面积
(1)若,
求角B的度数
(2)若a=8,B=,S=
,求b的值