已知圆的圆心在坐标原点O,且恰好与直线
相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足
(其中m为非零常数),试求动点
的轨迹方程
.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与
垂直的直线
与曲线C交于 B、D两点,求
面积的最大值.
某工厂的某种产品成箱包装,每箱 件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取 件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为 ,且各件产品是否为不合格品相互独立.
(1)记 件产品中恰有 件不合格品的概率为 ,求 的最大值点 ;
(2)现对一箱产品检验了 件,结果恰有 件不合格品,以(1)中确定的 作为 的值.已知每件产品的检验费用为 元,若有不合格品进入用户手中,则工厂要对每件不合格品支付 元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为 ,求 ;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
设椭圆 的右焦点为 ,过 的直线 与 交于 两点,点 的坐标为 .
(1)当 与 轴垂直时,求直线 的方程;
(2)设 为坐标原点,证明: .
如图,四边形
为正方形,
分别为
的中点,以
为折痕把 折起,使点
到达点
的位置,且
.
(1)证明:平面 平面 ;
(2)求 与平面 所成角的正弦值.
在平面四边形 中, , , , .
(1)求 ;
(2)若 ,求 .
设函数 .
(1)当 时,求不等式 的解集;
(2)若 恒成立,求 的取值范围.