游客
题文

如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.

(1)求点C的坐标;
(2)求一次函数的解析式.

科目 数学   题型 解答题   难度 中等
知识点: 平行线分线段成比例
登录免费查看答案和解析
相关试题

如图,在菱形ABCD中,AC、BD交于点O,AC=12cm,BD=16cm。动点P在线段AB上,由B向A运动,速度为1cm/s,动点Q在线段OD上,由D向O运动,速度为1cm/s。过点Q作直线EF┴BD交AD于E,交CD于F,连接PF,设运动时间为t(0<t<8)。问

(1)何时四边形APFD为平行四边形?求出相应t的值;
(2)设四边形APFE面积为ycm2,求y与t的函数关系式;.
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出相应t的值,并求出,P、E两点间的距离,若不存在,说明理由。

将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则SAB′C′:SABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,BC=1,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.

(1)求证:线段AB为⊙P的直径;
(2)求△AOB的面积;
(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.

如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径。

某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)如果多种5棵橙子树,计算每棵橙子树的产量;
(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树?
(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号