在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
已知:如图,点在同一直线上,
,
,
∥
.求证:
.
已知:,
,求代数式
的值.
计算:÷
(本题10分)如图,在平面直角坐标系xOy中,直线与y轴交于点C,与x轴交于点B,抛物线
经过B、C两点,与x轴的正半轴交于另一点A,且OA :OC="2" :7.
(1)求抛物线的解析式;
(2)点D为线段CB上,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;
(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.
(本题10分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F,AC∥BF.
(1)如图1,求证:FG=FB;
(2)如图2,连接BD、AC,若BD=BG,求证:AC∥BF;
(3)在(2)的条件下,若tan∠F=,CD=1,求⊙O的半径