如图,四棱锥的底面
是正方形,棱
底面
,
,
是
的中点.
(1)证明平面
;
(2)证明平面平面
.
设函数,
的图象关于直线
对称,其中
为常数,且
.
(1)求函数的最小正周期;
(2)若的图象经过点
,求函数
在
上的值域.
如图,在平面直角坐标系中,点A(0,3),直线
:
,设圆
的半径为1,圆心在
上.
(1)若圆心也在直线
上,过点A作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围.
正项数列满足:
.
(1)求数列的通项公式
;
(2)令,求数列
的前
项和
.
已知函数,且在
时函数取得极值.
(1)求的单调增区间;
(2)若,
(Ⅰ)证明:当时,
的图象恒在
的上方;
(Ⅱ)证明不等式恒成立.
如图示:已知抛物线的焦点为
,过点
作直线
交抛物线
于
、
两点,经过
、
两点分别作抛物线
的切线
、
,切线
与
相交于点
.
(1)当点在第二象限,且到准线距离为
时,求
;
(2)证明:.