为了比较“传统式教学法”与我校所创立的“三步式教学法”的教学效果.共选100名学生随机分成两个班,每班50名学生,其中一班采取“传统式教学法”,二班实行“三步式教学法”
(Ⅰ)若全校共有学生2000名,其中男生1100名,现抽取100名学生对两种教学方式的受欢迎程度进行问卷调查,应抽取多少名女生?
(Ⅱ)下表1,2分别为实行“传统式教学”与“三步式教学”后的数学成绩:
表1
数学成绩 |
90分以下 |
90—120分 |
120—140分 |
140分以上 |
频 数 |
15 |
20 |
10 |
5 |
表2
数学成绩 |
90分以下 |
90—120分 |
120—140分 |
140分以上 |
频 数 |
5 |
40 |
3 |
2 |
完成下面2×2列联表,并回答是否有99%的把握认为这两种教学法有差异.
班 次 |
120分以下(人数) |
120分以上(人数) |
合计(人数) |
一班 |
|
|
|
二班 |
|
|
|
合计 |
|
|
|
参考公式:,其中
参考数据:
P(K2≥k0) |
0.40 |
0.25 |
0.10 |
0.05 |
0.010 |
0.005 |
k0 |
0.708 |
1.323 |
2.706 |
3.841 |
6.635 |
7.879 |
如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD, ,FC
平面ABCD, AE
BD,CB =CD=-CF.
(Ⅰ)求证:平面ABCD 平面AED;
(Ⅱ)直线AF与面BDF所成角的余弦值
某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求
的分布列和数学期望.
设数列的前n项和为
,满足
,且
.
(Ⅰ)求的通项公式;
(Ⅱ)若成等差数列,求证:
成等差数列.
选修4-5:不等式选讲
已知函数
(Ⅰ)a=-3时,求不等式 的解集;
(Ⅱ)若关于x的不等式 恒成立,求实数a的取值范围
选修4-4:坐标系与参数方程
己知抛物线的顶点M到直线
(t为参数)的距离为1
(1)求m;
(2)若直线与抛物线相交于A,B两点,与y轴交于N点,求
的值.