如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。
①作∠DAC的平分线AM。②连接BE并延长交AM于点F。
(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。
如图,已知抛物线与坐标轴交于
三点,点
的横坐标为
,过点
的直线
与
轴交于点
,点
是线段
上的一个动点,
于点
.若
,且
.
(1)求的值
(2)求出点的坐标(其中
用含
的式子表示):
(3)依点的变化,是否存在
的值,使
为等腰三角形?
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于D,F两点.(12分)
图(a)图(b)
(1)如图(a),观察并猜想,在旋转过程中,线段EA1与FC是怎样的数量关系?并证明你的结论;
(2)如图(b),当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降10%,以后改进管理,大大激发全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)
如图,四边形内接于⊙
,
是⊙
的直径,
,垂足为
,
平分
.
(1)求证:是⊙
的切线;
(2)若,求
的长.
四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.