游客
题文

已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).

①求f(x)在x=3处的切线斜率;
②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在某城市中,M,N两地之间有整齐的方格形道路网,是道路网中位于一条对角线上的4个交汇处,今在道路网M、N处的甲、乙两人分别要到M,N处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止。

(1)求甲经过的概率;
(2)求甲、乙两人相遇经点的概率;
(3)求甲、乙两人相遇的概率;

旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条. (1)求3个旅游团选择3条不同的线路的概率
(2)求恰有2条线路没有被选择的概率.
(3)求选择甲线路旅游团数的期望.

一纸箱中装有大小相等,但已编有不同号码的白色和黄色乒乓球,其中白色乒乓球有6个,黄色乒乓球有2个。
(Ⅰ)从中任取2个乒乓球,求恰好取得1个黄色乒乓球的概率;
(Ⅱ)每次不放回地抽取一个乒乓球,求第一次取得白色乒乓球时已取出的黄色乒乓球个数ξ的分布列及数学期望Eξ。

已知暗箱中开始有3个红球,2个白裘。现每次从暗箱中取出一个球后,再将此球以及与它同色的5个球(共6个球)一起放回箱中。
(1)求第二次取出红球的概率;
(2)求第三次取出白球的概率;
(3)设取出白球得5分,取出红球得8分,求连续取球3次得分的期望值。

盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号