已知集合
(1)能否相等?若能,求出实数
的值,若不能,试说明理由?
(2)若命题命题
且
是
的充分不必要条件,求实数
的取值范围;
【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.
如图,三地有直道相通,
千米,
千米,
千米.现甲、乙两警员同时从
地出发匀速前往
地,经过
小时,他们之间的距离为
(单位:千米).甲的路线是
,速度为5千米/小时,乙的路线是
,速度为8千米/小时.乙到达
地后原地等待.设
时乙到达
地.
(1)求与
的值;
(2)已知警员的对讲机的有效通话距离是3千米.当时,求
的表达式,并判断
在
上得最大值是否超过3?说明理由.
【2015高考上海,文20】本题共2小题,第1小题6分,第2小题8分.
已知函数,其中
为实数.
(1)根据的不同取值,判断函数
的奇偶性,并说明理由;
(2)若,判断函数
在
上的单调性,并说明理由.
【2015高考上海,理20】如图,,
,
三地有直道相通,
千米,
千米,
千米.现甲、乙两警员同时从
地出发匀速前往
地,经过
小时,他们之间的距离为
(单位:千米).甲的路线是
,速度为
千米/小时,乙的路线是
,速度为
千米/小时.乙到达
地后原地等待.设
时乙到达
地.
(1)求与
的值;
(2)已知警员的对讲机的有效通话距离是千米.当
时,求
的表达式,并判断
在
上得最大值是否超过
?说明理由.
【2015高考浙江,理18】已知函数,记
是
在区间
上的最大值.
(1)证明:当时,
;
(2)当,
满足
,求
的最大值.
如图,已知椭圆与
的中心在坐标原点
,长轴均为
且在
轴上,短轴长分别为
,
,过原点且不与
轴重合的直线
与
,
的四个交点按纵坐标从大到小依次为
、
、
、
.记
,
和
的面积分别为
和
.
(1)当直线与
轴重合时,若
,求
的值;;
(2)设直线,若
,证明:
是线段
的四等分点
(3)当变化时,是否存在与坐标轴不重合的直线
,使得
?并说明理由.