游客
题文

如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.

(1)证明:AC⊥DE;
(2)若PC=BC,求二面角E-AC一P的余弦值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(12分)已知圆C1与圆C2相交于A、B两点。
⑴ 求公共弦AB的长;
⑵ 求圆心在直线上,且过A、B两点的圆的方程;
⑶ 求经过A、B两点且面积最小的圆的方程。

(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。

(12分) 已知四棱锥底面ABCD,其三视图如下,若M是PD的中点

⑴ 求证:PB//平面MAC;
⑵ 求直线PC与平面MAC所成角的正弦值。

(12分)已知有两个不等的负根,无实数根,若p或q为真,p且q为假,求m的取值范围。

已知圆的方程为,过点作直线与圆交于两点。

(1)若坐标原点O到直线AB的距离为,求直线AB的方程;
(2)当△的面积最大时,求直线AB的斜率;
(3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号