设函数,其中
为常数。
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)若函数有极值点,求
的取值范围及
的极值点。
在长方体中,截下一个棱锥
,求棱锥
的体积与剩余部分的体积之比.
已知直线经过点
,且斜率为
.
(I)求直线的方程;
(Ⅱ)若直线与
平行,且点P到直线
的距离为3,求直线
的方程.
某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量
件之间有如下关系:
x |
45 |
50 |
y |
27 |
12 |
(I)确定与
的一个一次函数关系式
;
(Ⅱ)若日销售利润为P元,根据(I)中关系写出P关于的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了并流入杯中,会溢出杯子吗?请用你的计算数据说明理由。(冰、水的体积差异忽略不计)
已知集合,对于数列
中
.
(Ⅰ)若三项数列满足
,则这样的数列
有多少个?
(Ⅱ)若各项非零数列和新数列
满足首项
,
(
),且末项
,记数列
的前
项和为
,求
的最大值.