如图,椭圆的左顶点为
,
是椭圆
上异于点
的任意一点,点
与点
关于点
对称.
(1)若点的坐标为
,求
的值;
(2)若椭圆上存在点
,使得
,求
的取值范围.
如图,在四棱锥中,底面
为矩形,
平面
,
,
为
中点.
(1)证明://平面
;
(2)证明:平面
.
已知为椭圆
上的三个点,
为坐标原点.
(1)若所在的直线方程为
,求
的长;
(2)设为线段
上一点,且
,当
中点恰为点
时,判断
的面积是否为常数,并说明理由.
已知抛物线,点
,过
的直线
交抛物线
于
两点.
(1)若线段中点的横坐标等于
,求直线
的斜率;
(2)设点关于
轴的对称点为
,求证:直线
过定点.
如图所示,四边形为直角梯形,
,
,
为等边三角形,且平面
平面
,
,
为
中点.
(1)求证:;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)在内是否存在一点
,使
平面
,如果存在,求
的长;如果不存在,说明理由.
如图,在直三棱柱中,
,
,
是
中点.
(1)求证:平面
;
(2)求直线与平面
所成角的正弦值.