设是同时符合以下性质的函数组成的集合:①,都有;②在上是减函数.(1)判断函数和()是否属于集合,并简要说明理由;(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.
已知函数。 (1)当时,求曲线在处切线的斜率; (2)求的单调区间; (3)当时,求在区间上的最小值。
已知一次函数满足。 (1)求的解析式; (2)求函数的值域。
已知数列是公差为-2的等差数列,是与的等比中项。 (1)求数列的通项公式; (2)设数列的前n项和为,求的最大值。
已知集合。 (1)求集合; (2)若,求实数a的取值范围。
已知,设曲线在点处的切线为。 (1)求实数的值; (2)设函数,其中。 求证:当时,。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号