如图,在平面直角坐标系中,设点
是椭圆
上一点,从原点
向圆
作两条切线分别与椭圆
交于点
,直线
的斜率分别记为
.
(1)若圆与
轴相切于椭圆
的右焦点,求圆
的方程;
(2)若.
①求证:;
②求的最大值
如图所示,是两个垃圾中转站,
在
的正东方向
千米处,
的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在
的北面建一个垃圾发电厂
. 垃圾发电厂
的选址拟满足以下两个要求(
可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点
到直线
的距离要尽可能大). 现估测得
两个中转站每天集中的生活垃圾量分别约为
吨和
吨,问垃圾发电厂该如何选址才能同时满足上述要求?
如图,已知直三棱柱的侧面
是正方形,点
是侧面
的中心,
,
是棱
的中点.
(1)求证:平面
;
(2)求证:平面平面
.
设函数的部分图象如图所示.
(1)求函数的解析式;
(2)当时,求
的取值范围.
已知函数图象上点
处的切线方程为
.
(1)求函数的单调区间;
(2)函数,若方程
在
上恰有两解,求实数
的取值范围.