甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分最低为0分,至少得15分才能入选.
(Ⅰ)求乙得分的分布列和数学期望;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.
(本题满分12分)
已知函数最大值是2,最小正周期是
,
是其图象的一条对称轴,求此函数的解析式.刘文迁
(本小题共14分)函数,
,
.
(1)①试用含有的式子表示
;②求
的单调区间;
(2)对于函数图像上的不同两点,
,如果在函数图像上存在点
(其中
在
与
之间),使得点
处的切线
∥
,则称
存在“伴随切线”,当
时,又称
存在“中值伴随切线”。试问:在函数
的图像上是否存在两点
、
,使得
存在“中值伴随切线”?若存在,求出
、
的坐标;若不存在,说明理由。
(本小题满分14分)已知数列满足,
.
(1)若数列是等差数列,求
的值;
(2)当时,求数列
的前
项;
(3)若对任意,都有
成立,求
的取值范围.
((本小题满分14分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
((本小题满分14分)设集合,
,
,若
,
,
(1)求实数的取值集合.
(2)求实数的取值集合.