如图所示,空间存在水平向右的匀强电场. 在竖直平面内 建立平面直角坐标系,在坐标系的一象限内固定绝缘光滑的半径为R的1/4圆周轨道AB,轨道的两端在坐标轴上。质量为m的带正电的小球从轨道的A端由静止开始滚下,已知重力为电场力的2倍,求:
(1)小球在轨道最低点B时对轨道的压力;
(2)小球脱离B点后开始计时,经过多长时间小球运动到B点的正下方?并求出此时小球距B的竖直高度h是多大?
如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为的绝缘斜面上,两导轨间距为L。M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过足够长的时间后,金属杆达到最大速度vm,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,它们之间的动摩擦因数为μ且μ< tanθ。已知重力加速度为g。
(1)求磁感应强度的大小;
(2)金属杆在加速下滑过程中,当速度达到v1(v1<vm)时,求此时杆的加速度大小;
(3)求金属杆从静止开始至达到最大速度的过程中下降的高度。
为了探测X星球,载着登陆舱的探测飞船总质量为m1在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1。随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2,已知万有引力恒量为G。求:
(1)X星球的质量(2)登陆舱在半径为r2的轨道上做圆周运动的周期
我国已于2004年启动“嫦娥绕月工程”,2007年之前将发射绕月飞行的飞船.已知月球半径R,月球表面的重力加速度g.如果飞船关闭发动机后绕月做匀速圆周运动,距离月球表面的高度h,求飞船速度的大小.
如图所示,在固定光滑水平板上有一光滑小孔O,一根
轻绳穿过小孔,一端连接质量m=1kg的小球A,另一端连接
质量M=4kg的物体B。当A球沿半径r=0.1m的圆周做匀速圆周
运动时,要使物体B不离开地面,A球做圆周运动的角速度有
何限制?(g=10m/s2)
如图所示,在与水平方向成θ=30°角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计。空间存在着匀强磁场,磁感应强度B=0.20T,方向垂直轨道平面向上,轨道底端连有电阻R=10.0×10-2Ω。导体棒ab、cd垂直于轨道放置,且与金属轨道接触良好,每根导体棒的质量均为m=2.0×10-2kg,导体棒ab电阻r=5.0×10-2Ω,导体棒cd阻值与R相同。金属轨道宽度l=0.50m。现先设法固定导体棒cd,对导体棒ab施加平行于轨道向上的恒定拉力,使之由静止开始沿轨道向上运动。导体棒ab沿轨道运动距离为S=1.0m时速度恰达到最大,此时松开导体棒cd发现它恰能静止在轨道上。取g=10m/s2, 求:
(1)导体棒ab的最大速度以及此时ab两点间的电势差;
(2)导体棒ab从开始到运动距离为S的过程中电阻R上产生的总热量。