游客
题文

已知曲线 C 1 的参数方程为 x = 4 + 5 c o s t y = 5 + 5 s i n t t 为参数),以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ = 2 sin θ
(Ⅰ)把 C 1 的参数方程化为极坐标方程;
(Ⅱ)求 C 1 C 2 交点的极坐标 ( ρ 0 , 0 θ 2 π )

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

设函数 f ( x ) = x e kx ( k 0 )

(Ⅰ)求曲线 y = f ( x ) 在点 ( 0 , f ( 0 ) ) 处的切线方程;

(Ⅱ)求函数 f ( x ) 的单调区间;

(Ⅲ)若函数 f ( x ) 在区间 ( - 1 , 1 ) 内单调递增,求 k 的取值范围。

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是 1 3 ,遇到红灯时停留的时间都是2min。

(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;

(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间 ξ 的分布列及期望。

如图,在三棱锥 P - ABC 中, PA 底面 ABC , PA = AB , ABC = 6 0 ° , BCA = 9 0 ° ,点 D E 分别在棱 PB , PC 上,且 DE / / BC

(Ⅰ)求证: BC 平面 PAC

(Ⅱ)当 D PB 的中点时,求 AD 与平面 PAC 所成的角的大小;

(Ⅲ)是否存在点 E 使得二面角 A - DE - P 为直二面角?并说明理由。

ΔABC 中,角 A , B , C 的对边分别为 a , b , c , B = π 3 cos A = 4 5 , b = 3

(Ⅰ)求 sin C 的值;

(Ⅱ)求 Δ ABC 的面积。

设各项均为正数的数列 a n 满足 a 1 = 2 , a n = a n + 1 3 2 a n + 2 ( n N * ) .

(Ⅰ)若 a 2 = 1 4 , a 3 , a 4 ,并猜想 a 2008 的值(不需证明);

(Ⅱ)若 2 2 a 1 a 2 a n 4 n 2 恒成立,求 a 2 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号