已知某公司生产品牌服装的年固定成本是10万元,每生产千件,须另投入2 7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且 (1)写出年利润W(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大?(注:年利润=年销售收入 年总成本)
已知等差数列中,,求数列的通项公式及
设函数f(x)=|x﹣4|+|x﹣a|(a>1),且f(x)的最小值为3,若f(x)≤5,求x的取值范围.
(1)求点M(2,)到直线ρ=上点A的距离的最小值. (2)求曲线关于直线y=1对称的曲线的参数方程.
AD是△ABC的角平分线,以AD为弦的圆与BC相切于D点,与AB,AC交于E,F.求证:AE•CF=BE•AF.
已知{an}为等比数列,其前n项和为Sn,且Sn=2n+a,(n∈N*). (1)求a的值及数列{an}的通项公式; (2)若bn=(2n﹣1)an,求数列{bn}的前n项和Tn.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号