已知函数,
(1)当时,求曲线
在点
处的切线方程;
(2)求函数的极值.
等差数列中,
,前
项和为
,等比数列
各项均为正数,
,且
,
的公比
(1)求与
;
(2)求
已知:正方体,
为棱
的中点.
(1)求证:
(2)求三棱锥的体积;
(3)求证:平面
.
已知数列,其中
是首项为1,公差为1的等差数列;
是公差为
的等差数列;
是公差为
的等差数列(
).
(1)若,求
;
(2)试写出关于
的关系式,并求
的取值范围;
(3)续写已知数列,使得是公差为
的等差数列,……,依次类推,把已知数列推广为无穷数列的一般结论是什么?(不需要证明)
在中,
为锐角,角
所对的边分别为
,且
,
.
(Ⅰ)求的值;
(Ⅱ)若,求
的值.
某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.
(I)求该选手在复赛阶段被淘汰的概率;
(II)设该选手在竞赛中回答问题的个数为,求
的分布列、数学期望和方差.