某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为4元/千克时,每日可销售出该商品5千克;销售价格为4.5元/千克时,每日可销售出该商品2.35千克.
(1)求的解析式;
(2)若该商品的成本为2元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润
最大.
在三棱柱中,侧面
为矩形,
,
,
是
的中点,
与
交于点
,且
平面
.
(1)证明:;
(2)若,求直线
与平面
所成角的正弦值.
已知
(1)最小正周期及对称轴方程;
(2)已知锐角的内角
的对边分别为
,且
,
,求
边上的高的最大值.
在数列中,
,且对任意的
,
成等比数列,其公比为
.
(1)若=2(
),求
;
(2)若对任意的,
,
,
成等差数列,其公差为
,设
.
① 求证:成等差数列,并指出其公差;
② 若=2,试求数列
的前
项的和
.
已知函数
(1)求函数在点
处的切线方程;
(2)求函数单调递增区间;
(3)若存在,使得
是自然对数的底数),求实数
的取值范围.
已知椭圆E:过点D(1,
),且右焦点为F(1,0),右顶点为A.过点F的弦为BC.直线BA,直线CA分别交直线l:x=m,(m>2)于P、Q两点.
(1)求椭圆方程;
(2)若FP⊥FQ,求m的值.