已知函数.
(1)求函数在
上的最小值;
(2)若函数有两个不同的极值点
、
且
,求实数
的取值范围.
设函数.
(1)求的最小正周期和值域;
(2)在锐角△中,角
的对边分别为
,若
且
,
,求
和
.
已知函数,
。
(1)求不等式的解集;
(2)若不等式有解,求实数
的取值范围。
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为
(
为参数),点Q的极坐标为
。
(1)化圆C的参数方程为极坐标方程;
(2)若直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线
的直角坐标方程。
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。
求:(1)⊙O的半径;(2)s1n∠BAP的值。
已知为函数
图象上一点,O为坐标原点,记直线
的斜率
.
(1)若函数在区间
上存在极值,求实数m的取值范围;
(2)设,若对任意
恒有
,求实数
的取值范围.