已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为
(
为参数),点Q的极坐标为
。
(1)化圆C的参数方程为极坐标方程;
(2)若直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线
的直角坐标方程。
为了分析某个高三学生的学习状态,对其下一阶段的学习作出预测和提供指导性建议,现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
数学 |
88 |
83 |
117 |
92 |
108 |
100 |
112 |
物理 |
94 |
91 |
108 |
96 |
104 |
101 |
106 |
(1)分别求出这个考生的他的数学平均成绩与物理平均成绩,并判断在这个学科中哪科成绩更稳定;
(2)已知该生的物理成绩y与数学成绩x是线性相关的,求出线性回归方程;
(3)若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?
参考公式:,
二次函数满足
。
(1)求函数的解析式;
(2)在区间上,
的图象恒在
的图象上方,试确定实数
的取值范围。
每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆
.
(Ⅰ)求z的值.
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
轿车A |
轿车B |
轿![]() |
|
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
当实数x为何值时,复数z=x2+x-2+(x2-3x-10)i是
(Ⅰ)虚数;(Ⅱ)纯虚数;(Ⅲ)正实数。
(本小题满分12分)
已知椭圆:.
(Ⅰ)若椭圆的一个焦点到长轴的两个端点的距离分别为和
,求椭圆的方程;