(15分)某校举行托乒乓球跑步比赛,赛道为水平直道,比赛距离为s,比赛时,某同学将球置于球拍中心,以大小为a的加速度从静止开始做匀加速直线运动,当速度达到v0时,再以v0做匀速直线运动跑至终点,整个过程中球一直保持在球拍中心不动,比赛中,该同学在匀速直线运动阶段保持球拍的倾角为θ0,如图所示,设球在运动中受到空气阻力大小与其速度大小成正比,方向与运动方向相反,不计球与球拍之间的摩擦,球的质量为m,重力加速度为g。求:
⑴空气阻力大小与球速大小的比例系数k;
⑵加速跑阶段球拍倾角θ随速度v变化的关系式;
⑶整个匀速跑阶段,若该同学速度仍为v0,而球拍的倾角比θ0大了β并保持不变,不计球在球拍上的移动引起的空气阻力变化,为保证到达终点前球不从球拍上距离中心为r的下边沿掉落,求β应满足的条件。
在金属板A、B间加上如图乙所示的大小不变、方向周期性变化的交变电压Uo,其周期是T。现有电子以平行于金属板的速度vo从两板中央射入。已知电子的质量为m,电荷量为e,不计电子的重力,求:
(1)若电子从t=0时刻射入,在半个周期内恰好能从A板的边缘飞出,则电子飞出时速度的大小。
(2)若电子从t=0时刻射入,恰能平行于金属板飞出,则金属板至少多长?
(3)若电子从t=T/4时刻射入,恰能从两板中央平行于板飞出,则两板间距至少多大?
如图所示,两平行金属板相距为d,电势差为U,一电子质量为m,电荷量为e,从O点沿垂直于极板的方向射出,最远到达A点,然后返回,已知OA=h,求此电子具有的初速度是多少?
从20m高的平台边缘有一小球A自由落下,此时恰有一小球B在A球正下方从地面上以20m/s的初速度竖直上抛。求:
(1)经过多长时间两球在空中相遇;
(2)相遇时两球的速度vA、vB;
(3)若要使两球能在空中相遇,B球上抛的初速度v0最小必须为多少?(取g=10m/s2)
A、B两列火车,在同一轨道上同向行驶,A车在前,其速度vA=10m/s,B车在后,其速度vB=30m/s,,因大雾能见度低,B车在距A车x0=85m时才发现前方有A车,这时B车立即刹车,但B车要经过180m才能停止,问:B车刹车时A车仍按原速率行驶,两车是否会相撞?若会相撞,将在B车刹车后何时相撞?若不会相撞,则两车最近距离是多少?
物体在斜坡顶端以1 m/s的初速度和0.5 m/s2的加速度沿斜坡向下作匀加速直线运动,已知斜坡长24米,
求:(1) 物体滑到斜坡底端所用的时间。(2) 物体到达斜坡中点速度。