已知圆,圆
,动圆
与已知两圆都外切.
(1)求动圆的圆心的轨迹
的方程;
(2)直线与点
的轨迹
交于不同的两点
、
,
的中垂线与
轴交于点
,求点
的纵坐标的取值范围.
是否存在常数a、b、c,使等式对一切正整数n都成立?证明你的结论
如图,点为斜三棱柱
的侧棱
上一点,
交
于点
,
交
于点
.
(1) 求证:;
(2) 在任意中有余弦定理:
. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.
( 14分)已知函数,
,其中
为无理数
.(1)若
,求证:
;(2)若
在其定义域内是单调函数,求
的取值范围;(3)对于区间(1,2)中的任意常数
,是否存在
使
成立?
若存在,求出符合条件的一个;否则,说明理由.
已知(I)若a=3,求
的单调区间和极值;(II)已知
是
的两个不同的极值点,且
,若
恒成立,求实数
的取值范围.
设函数为奇函数,且
,数列
与
满足如下关系:
(1)求
的解析式;(2)求数列
的通项公式
;(3)记
为数列
的前
项和,求证:对任意的
有