已知函数.
(1)若函数为奇函数,求a的值;
(2)若函数在
处取得极大值,求实数a的值;
(3)若,求
在区间
上的最大值.
在平面直角坐标系中,已知曲线
的参数方程是
(
是参数),若以
为极点,
轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线
的极坐标方程.
已知二阶矩阵A有特征值及对应的一个特征向量
和特征值
及对应的一个特征向量
,试求矩阵A.
已知数列是等差数列,其前n项和为Sn,若
,
.
(1)求;
(2)若数列{Mn}满足条件: ,当
时,
-
,其中数列
单调递增,且
,
.
①试找出一组,
,使得
;
②证明:对于数列,一定存在数列
,使得数列
中的各数均为一个整数的平方.
如图,在平面直角坐标系中,已知椭圆
:
,设
是椭圆
上的任一点,从原点
向圆
:
作两条切线,分别交椭圆于点
,
.
(1)若直线,
互相垂直,求圆
的方程;
(2)若直线,
的斜率存在,并记为
,
,求证:
;
(3)试问是否为定值?若是,求出该值;若不是,说明理由.
已知函数(其中
是自然对数的底数),
,
.
(1)记函数,且
,求
的单调增区间;
(2)若对任意,
,均有
成立,求实数
的取值范围.