已知真命题:“函数的图像关于点
成中心对称图形”的充要条件为“函数
是奇函数”.
(Ⅰ)将函数的图像向左平移
个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数
图像对称中心的坐标;
(Ⅱ)求函数图像对称中心的坐标;
(Ⅲ)已知命题:“函数 的图像关于某直线成轴对称图像”的充要条件为“存在实数
和
,使得函数
是偶函数”.判断该命题的真假,如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
(本小题14分)已知数列的前
项和为
,
且
,数列
为等差数列,且公差
,
(1)求数列的通项公式
(2)若成等比数列,求数列
的前项和
如图,已知平面
,
∥
,
是正三角形,且
.
(1)设是线段
的中点,求证:
∥平面
;
(2)求直线与平面
所成角的余弦值.
如图,设是单位圆和
轴正半轴的交点,
是单位圆上
的两点,是坐标原点,
,
.
(1)若,求
的值;
(2)设函数,求
的值域.
22.已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明
为定值;
|
(Ⅲ)过A、B分别作抛物C的切线且
交于点M,求
与
面积之和的最小值.
已知函数
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)若在
是单调函数,求实数
的取值范围.