已知函数,其中
是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意
满足
,求证:当
时,
;
(Ⅲ)若,且
,求证:
(本小题满分14分)已知向量m=(lnx,1-alnx),n=(x,f(x)),m∥n,(a为常数)
(1)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(2)若存在x1,x2∈[e,e2],使得f(x1)≤f '(x2)+a,求实数a的取值范围.
(本小题满分13分)设椭圆(a>b>0)的离心率e=
,左顶点M到直线
的距离d=
,O为坐标原点.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;
(3)在(2)的条件下,试求△AOB的面积S的最小值.
(本小题满分12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与“国五条”赞成人数统计表(如下表):
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调差,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
(本小题满分12分)如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.
(1)求证:PA∥平面BEF;
(2)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的大小.
(本小题满分12分)在△ABC中,角A,B,C的对边分别是a,b,c,若asinA=(a-b)sinB+csinC
(1)求角C的值;
(2)若c=2,且sinC+sin(B-A)=3sin2A,求△ABC的面积.