以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,)。
(I)求椭圆C的方程;
(II)过P点分别以为斜率的直线分别交椭圆C于A,B,M,N,求证:
使得
已知矩阵,A的一个特征值
,其对应的特征向量是
.
(Ⅰ)求矩阵;
(Ⅱ)若向量,计算
的值.
已知函数处取得极值.
(1)求实数a的值,并判断上的单调性;
(2)若数列满足
;
(3)在(2)的条件下,
记
求证:
已知圆,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量
.
(1)求动点Q的轨迹E的方程;
(2)当时,设动点Q关于x轴的对称点为点P,直线PD交轨迹E于点F(异于P点),证明:直线QF与x轴交于定点,并求定点坐标.
某工厂生产一种精密仪器,产品是否合格需先后经两道相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,经长期监测发现,该仪器第一道工序检查合格的概率为,第二道工序检查合格的概率为
.已知该厂每月生为3台这种仪器.
(1)求每生产一台合格仪器的概率;
(2)用表示每月生产合格仪器的台数,求
的分布列和数学期望;
(3)若生产一台仪器合格可盈利10万元,不合格要亏损3万元,求该厂每月的期望盈利额.
三棱锥P—ABC中,△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分别为AB、PB的中点.
(1)求证:AC⊥PD;
(2)求二面角E—AC—B的正切值;
|
(3)求三棱锥P—CDE与三棱锥P—ABC的体积之比.