如图,已知点,直线
与函数
的图象交于点
,与
轴交于点
,记
的面积为
.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的最大值.
(本小题满分12分)已知函数(
).
(1)求函数的最大值;
(2)若,证明:
.
(本小题满分12分)设向量,其中
,
,已知函数
的最小正周期为
.
(1)求的对称中心;
(2)若是关于
的方程
的根,且
,求
的值.
(本小题满分10分)已知集合.
(1)若,求出实数
的值;
(2)若命题命题
且
是
的充分不必要条件,求实数
的取值范围.
已知.
(1)求的单调区间;
(2)令,则
时有两个不同的根,求
的取值范围;
(3)存在,
且
,使
成立,求
的取值范围.
在数列中,
,
,
,其中
.
(1)求证:数列为等差数列;
(2)设,试问数列
中是否存在三项,它们可以构成等差数列?若存在,求出这三项;若不存在,说明理由.
(3)已知当且
时,
,其中
,
,
,
,求满足等式
的所有
的值.