已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O为AB的中点.(Ⅰ)求证:EO⊥平面ABCD;(Ⅱ)求点D到平面AEC的距离.
化简求值: (1); (2).
已知抛物线的焦点为F,其准线与x轴交于点M,过点M作斜率为k的直线l交抛物线于A、B两点,. (Ⅰ)求k的取值范围 (Ⅱ)若弦AB的中点为P,AB的垂直平分线与x轴交于点E(O),求证:
设函数的图像与直线相切于点。 (Ⅰ)求的值; (Ⅱ)讨论函数的单调性。
已知命题不等式的解集为R;命题:在区间上是增函数.若命题“”为假命题,求实数的取值范围.
已知{}是公差不为零的等差数列,=1,且,,成等比数列. (Ⅰ)求数列{}的通项;(Ⅱ)求数列{}的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号