如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
| 喜欢 |
不喜欢 |
合计 |
|
| 大于40岁 |
20 |
5 |
25 |
| 20岁至40岁 |
10 |
20 |
30 |
| 合计 |
30 |
25 |
55 |
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:
,其中
)
已知函数
,
的最大值为2.
(1)求函数
在
上的值域;
(2)已知
外接圆半径
,
,角
所对的边分别是
,求
的值.
已知函数
.
(1)若不等式
的解集为
,求实数a的值;
(2)在(1)的条件下,若存在实数
使
成立,求实数
的取值范围.
已知直线
:
为参数), 曲线
(
为参数).
(1)设
与
相交于
两点,求
;
(2)若把曲线
上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
已知函数
.
(1)求函数
的单调区间;
(2)若函数
满足:
①对任意的
,
,当
时,有
成立;
②对
恒成立.求实数
的取值范围.