在平面直角坐标系中,已知椭圆
:
的离心率
,且椭圆C上一点
到点Q
的距离最大值为4,过点
的直线交椭圆
于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当
时,求实数
的取值范围.
已知双曲线与椭圆共焦点,它们的离心率之和为
,求双曲线的标准方程。
(本小题满分14分)
已知椭圆C:+
=1
的左.右焦点为
,离心率为
,直线
与x轴、y轴分别交于点
,
是直线
与椭圆C的一个公共点,
是点
关于直线
的对称点,设
=
(Ⅰ)证明:; (Ⅱ)确定
的值,使得
是等腰三角形.
(本小题满分14分)
已知抛物线方程为,在y轴上截距为2的直线l与抛物线交于M、N两点,O为坐标原点,若OM⊥ON,求直线l的方程.
.(本小题满分12分)
设是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根
均大于1的什么条件?说明理由.
(本小题10分)
设分别为椭圆
的左、右两个焦点.(1)若椭圆
上的点
两点的距离之和等于4,求椭圆
的方程和焦点坐标;(2)设点P是(1)中所得椭圆上的动点,
。