已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为
万元,且
.
(1)写出年利润(万元)关于年产量
(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
已知函数
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;
(3)设q>p>2,求证:当x∈(p,q)时,.
已知函数.
(1)当时,求曲线
在点
处的切线方程;
(2)当时,讨论
的单调性.
设函数.
(1)设,
,
,证明:
在区间
内存在唯一的零点;
(2)设,若对任意
、
,有
,求
的取值范围.
已知函数,其中
,
是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知,且函数
在R上是单调函数,探究函数
的单调性.
已知关于x的函数
(1)当时,求函数
的极值;
(2)若函数没有零点,求实数a取值范围.