在“2013魅力新邢台”青少年才艺表演评比活动中,参赛选手成绩的茎叶图和频率分布直方图,都受到不同程度的损坏,回答问题
(1)求参赛总人数和频率分布直方图中之间的矩形的高,并完成直方图;
(2)若要从分数在之间任取两份进行分析,在抽取的结果中,求至少有一份分数在
之间的概率.
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=.
(Ⅰ)求证:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
设公比大于零的等比数列的前
项和为
,且
,
,数列
的前
项和为
,满足
,
,
.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)满足对所有的
均成立,求实数
的取值范围.
在△ABC中,角A,B,C所对的边分别为,已知函数
R).
(Ⅰ)求函数的最小正周期和最大值;
(Ⅱ)若函数在
处取得最大值,且
,求
的面积
.
设函数.
(Ⅰ) 若函数在
上为增函数, 求实数
的取值范围;
(Ⅱ) 求证:当且
时,
.
有一块边长为4米的正方形钢板,现对其进行切割,焊接成一个长方体无盖容器(切、焊损耗忽略不计),有人用数学知识作了如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成长方体。
(Ⅰ)求这种切割、焊接而成的长方体的最大容积.
(Ⅱ)请问:能重新设计,使所得长方体的容器的容积吗?若能、给出你的一种设计方案。