某种产品的广告费支出与销售额
(单位:万元)之间有如下对应数据:
![]() |
2 |
4 |
5 |
6 |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
(参考数据:
参考公式:线性回归方程系数:,
)
如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且|CD|=|AA1|.椭圆的一条弦AC交双曲线于E,设
,当
时,求双曲线的离心率e的取值范围.
设,
为直角坐标平面内x轴.y轴正方向上的单位向量,若
,且
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点A.B,满足(1)直线AB过点(0,3),(2)若,则OAPB为矩形,试求AB方程.
在直角坐标平面中,的两个顶点
的坐标分别为
,
,平面内两点
同时满足下列条件:
①;②
;③
∥
(1)求的顶点
的轨迹方程;
(2)过点的直线
与(1)中轨迹交于
两点,求
的取值范围
椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为a.
(1)用半焦距c表示椭圆的方程及;
(2)若2<<3,求椭圆率心率e的取值范围.
设椭圆的中心是坐标原点,焦点在轴上,离心率
,已知点
到这个椭圆上的点的最远距离是4,求这个椭圆的方程.