设椭圆的左、右顶点分别为
、
,离心率
.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且
.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:平面
;
(2)求点到平面
的距离.
已知平行四边形的两条边所在直线的方程分别是,
, 且它的对角线的交点是M(3,3),求这个平行四边形其它两边所在直线的方程.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:∥平面
;
(2)求证:AC⊥BC1.
已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.