某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且
.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为
千元,设该容器的建造费用为
千元.
(Ⅰ)写出关于
的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的.
选修4-5:不等式选讲)已知x,yR,且|x+y|≤,|x-y|≤,求证:|5x+y|≤1.
选修4-4:坐标系与参数方程)已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线
的极坐标方程为
.
(1)把直线的极坐标方程化为直角坐标系方程;
(2)已知为椭圆
上一点,求
到直线
的距离的最小值.
(选修4-2:矩阵与变换) 已知矩阵, (1)求逆矩阵
;(2)若矩阵
满足
,试求矩阵
.
(选修4-1:几何证明选讲)如图在中,AB=AC,过点A的直线与
的外接圆交于点P,交BC的延长线于点D.求证
(本小题满分16分)已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn.求满足不等式>2 010的n的最小值.