游客
题文

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的

科目 数学   题型 解答题   难度 中等
知识点: 不定方程和方程组
登录免费查看答案和解析
相关试题

已知函数,且的解集为
(1)求的值;
(2)若,且,求证:

已知曲线(t为参数),(为参数).
(1)化的方程为普通方程,并说明它们分别表示什么曲线;
(2)过曲线的左顶点且倾斜角为的直线交曲线两点,求

直线AB经过⊙O上的点C,并且OA=OB,CA=CB.⊙O交直线OB于E,D,连接EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=,⊙O的半径为3,求OA的长.

已知函数处取得极值.
(1)求的表达式;
(2)设函数.若对于任意的,总存在唯一的,使得,求实数的取值范围.

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明
(ⅱ)求证:线段的长为定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号