设二次函数的图像过原点,,的导函数为,且,(1)求函数,的解析式;(2)求的极小值;(3)是否存在实常数和,使得和若存在,求出和的值;若不存在,说明理由.
设函数满足:对任意的实数有 (Ⅰ)求的解析式; (Ⅱ)若方程有解,求实数的取值范围.
三棱锥中,,,. (Ⅰ)求证:平面平面; (Ⅱ)当时,求三棱锥的体积.
已知的面积满足,的夹角为. (Ⅰ)求的取值范围; (Ⅱ)求函数的最大值.
(本小题满分14分)已知函数. (Ⅰ)函数在区间上是增函数还是减函数?证明你的结论; (Ⅱ)当时,恒成立,求整数的最大值; (Ⅲ)试证明:.
设数列为单调递增的等差数列且依次成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)若求数列的前项和; (Ⅲ)若,求证:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号