如图所示,一水平传送装置由轮半径为
的主动轮
和从动轮
及传送带等构成.两轮轴心相距
,轮与传送带不打滑.现用此装置运送一袋面粉(可视为质点),已知这袋面粉与传送带之间的动摩擦因数
,这袋面粉中的面粉可不断地从袋中少量渗出.(
) 
(1)当传送带以
的速度匀速运动时,将这袋面粉由左端
正上方的
点轻放在传送带上后,这袋面粉由
端运送到
正上方的B端所用的时间为多少?已知这袋面粉质量为
,渗出面粉的质量不计,求摩擦力对这袋面粉所做的功?
(2)要想尽快将这袋面粉(初速度为零)由
点送到
点,传送带的速度至少多大?
(3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉痕迹,这袋面粉(初速度为零)在传送带上留下的痕迹最长能有多长?此时传送带的速度应满足什么条件?
如图所示,足够长的斜面倾角θ=370,一物体以v0=12m/s的初速度从斜面上A点处沿斜面向上运动;加速度大小为a=8m/s2,g取10m/s2.求:
(1)物体沿斜面上滑的最大距离x;
(2)物体与斜面间的动摩擦因数μ;
(3)物体从A点出发需经多少时间才能回到A处.
如图所示,直线MN下方无磁场,上方空间存在两个匀强磁场,其分界线是半径为R的半圆,两侧的磁场方向相反且垂直于纸面,磁感应强度大小都为B。现有一质量为m、电荷量为q的带负电粒子从P点沿半径方向向左侧射出,最终打到Q点,不计粒子的重力。求:
(1)粒子从P点到Q点的最短运动时间及其对应的运动速率;
(2)符合条件的所有粒子的运动时间及其对应的运动速率。
如图所示,一束激光从O点由空气射入厚度均匀的介质,经下表面反射后,从上面的A点射出。已知入射角为i,A与O相距l介质的折射率为n,试求介质的厚度d。
一电阻为R的金属圆环,放在匀强磁场中,磁场与圆环所在平面垂直,如图(a),已知通过圆环的磁通量随时间t的变化关系如图(b),图中的最大磁通量
和变化周期T都是已知量,求:
(1)在t=0到t= T/4的时间内,通过金属圆环横截面的电荷量q
(2)在t=0到t=2T的时间内,金属环所产生的电热Q
图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B,在X轴上距坐标原点L的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v的速率从P处射入磁场,若粒子在y轴上距坐标原点L的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力。
(1)求上述粒子的比荷
;
(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向;
(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积。