斜三棱柱,其中向量
,三个向量之间的夹角均为
,点
分别在
上且
,
=4,如图
(Ⅰ)把向量用向量
表示出来,并求
;
(Ⅱ)把向量用
表示;
(Ⅲ)求与
所成角的余弦值.
已知函数在
处取得极值.
(1)求实数的值;
(2)若关于的方程
在区间
上恰有两个不同的实数根,求实数
的取值范围;
(3)证明:对任意的正整数,不等式
都成立.
已知椭圆的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆的方程和焦点坐标;
(2)过点的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.
若函数.当
时,函数
取得极值
.
(1)求函数的解析式;
(2)若函数有3个解,求实数
的取值范围.
已知函数,
(1)当且
时,证明:对
,
;
(2)若,且
存在单调递减区间,求
的取值范围;
(3)数列,若存在常数
,
,都有
,则称数列
有上界。已知
,试判断数列
是否有上界.
如图,已知抛物线的焦点在抛物线
上.
(1)求抛物线的方程及其准线方程;
(2)过抛物线上的动点
作抛物线
的两条切线
、
, 切点为
、
.若
、
的斜率乘积为
,且
,求
的取值范围.