(本小题满分14分)如图,四棱锥P—ABCD的底面是边长为1的正方形,PD^底面ABCD,PD=AD,E为PC的中点,F为PB上一点,且EF^PB.
(1)证明:PA//平面EDB;
(2)证明:AC^DF;
(3)求三棱锥B—ADF的体积.
(本小题满分12分)某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如下表.
优秀 |
非优秀 |
总计 |
|
课改班 |
50 |
||
非课改班 |
20 |
110 |
|
合计 |
210 |
(1)请完成上面的2´2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改
有关”;
(2)若采用分层抽样的方法从课改班的学生中随机抽取4人,则数学成绩优秀和数学成绩非优秀抽取的人数分别是多少?
(3)在(2)的条件下,从中随机抽取2人,求两人数学成绩都优秀的概率.
(本小题满分12分)已知函数.
(1)求函数的最小正周期;
(2)若,
,求
的值.
(本小题满分14分)已知函数(
),
.
(1)讨论的单调区间;(2)是否存在
时,对于任意的
,都有
恒成立?若存在,求出m的取值范围;若不存在,请说明理由.
(本小题满分14分)已知直线l:与双曲线C:
(
)相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)设双曲线C的右顶点为A,右焦点为F,,试判断△ABD是否为直角三角形,并说明理由.