如图,四棱锥中,
是正三角形,四边形
是矩形,且平面
平面
,
,
.
(Ⅰ)若点是
的中点,求证:
平面
;
(II)试问点在线段
上什么位置时,二面角
的余弦值为
.
(Ⅰ)已知函数(
)的最小正周期为
.求函数
的单调增区间;
(Ⅱ)在中,角
对边分别是
,且满足
.若
,
的面积为
.求角
的大小和边b的长.
一个几何体的三视图如下图所示(单位:),
(1)该几何体是由那些简单几何体组成的;
(2)求该几何体的表面积和体积.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且+
+
=m,求证:a+2b+3c≥9.
已知曲线的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(Ⅰ)写出直线的普通方程与曲线
的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换
得到曲线
,设
为曲线
上任一点,求
的最小值,并求相应点
的坐标.
如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=ACAE=
AB,BD,CE相交于点F.
(Ⅰ)求证:A,E,F, D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.