新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不低于
万元,同时不超过投资收益的
.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型
的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
①; ②
试分别分析这两个函数模型是否符合公司要求.
选修4-2:矩阵与变换(本小题满分10分)
已知矩阵,向量
,求向量
,使得
.
选修4-1:几何证明选讲(本小题满分10分)
如图,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB为直径的圆,DC的延长线与AB的延长线交于点E. 若EB=6,EC=6,求BC的长.
(本小题满分16分) 对于项数为的有穷数列
,记
,即
为
中的最大值,则称
是
的“控制数列”,
各项中不同数值的个数称为
的“控制阶数”.
(Ⅰ)若各项均为正整数的数列的控制数列
为
,写出所有的
;
(Ⅱ)若,
,其中
,
是
的控制数列,试用
表示
的值;
(Ⅲ)在的所有全排列中,将每种排列视为一个数列,对于其中控制阶数为2的所有数列,求它们的首项之和.
(本小题满分16分)已知函数.
(Ⅰ)当时,求
在区间
上的最小值;
(Ⅱ)讨论函数的单调性;
(Ⅲ)当时,有
恒成立,求
的取值范围.
(本小题满分16分) 已知椭圆两焦点坐标分别为
,
,一个顶点为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线
,使直线
与椭圆
交于不同的两点
,满足
. 若存在,求出
的取值范围;若不存在,说明理由.