(本小题满分16分) 对于项数为的有穷数列
,记
,即
为
中的最大值,则称
是
的“控制数列”,
各项中不同数值的个数称为
的“控制阶数”.
(Ⅰ)若各项均为正整数的数列的控制数列
为
,写出所有的
;
(Ⅱ)若,
,其中
,
是
的控制数列,试用
表示
的值;
(Ⅲ)在的所有全排列中,将每种排列视为一个数列,对于其中控制阶数为2的所有数列,求它们的首项之和.
已知圆A:与
轴负半轴交于B点,过B的弦BE与
轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆。(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值。
已知,⑴求
的值;⑵求
的值.
已知函数,数列
满足:
.
(Ⅰ)求证:;
(Ⅱ)求数列的通项公式;
(Ⅲ)求证不等式:
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过
、
、
三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于
、
的任意一点,
,当
内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆
交于
、
两点,证明直线
与直线
的交点在直线
上.
已知函数
(1)若函数的最小值是
,且
,
求
的值:
(2)若,且
在区间
恒成立,试求
取范围;