设函数.
(1)当,
时,求函数
的最大值;
(2)令,其图象上存在一点
,使此处切线的斜率
,求实数
的取值范围;
(3)当,
,
时,方程
有唯一实数解,求
的值.
(本小题满分12分)已知椭圆:
,其通径(过焦点且与x轴垂直的直线被椭圆截得的线段)长
.
(1)求椭圆的方程;
(2)设过椭圆右焦点的直线(不与
轴重合)与椭圆交于
两点,问在
轴上是否存在一点
,使
为常数?若存在,求点
的坐标,若不存在,说明理由.
(本小题满分12分)在平行六面体中,
,
,
是
的中点.
(1)证明面
;
(2)当平面平面
,求
.
(本小题满分10分)选修4-5:不等式选讲
(1)已知,求
的取值范围;
(2)若对任意,
恒成立,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知直线的参数方程为
,曲线
的参数方程为
,设直线
与曲线
交于两点
(1)求;
(2)设为曲线
上的一点,当
的面积取最大值时,求点
的坐标.
(本小题满分10分)选修4-1:几何证明选讲
已知(
)的外接圆为圆
,过
的切线
交
于点
,过
作直线交
于点
,且
(1)求证:平分角
;
(2)已知,求
的值.