甲车在弯路做刹车试验,收集到的数据如下表所示:
速度![]() |
0 |
5 |
10 |
15 |
20 |
25 |
… |
刹车距离![]() |
0 |
![]() |
2 |
![]() |
6 |
![]() |
… |
(1)请用上表中的各对数据作为点的坐标,在如图所示的坐标系中画出刹车距离
(米)与速度
(千米/时)的函数图象,并求函数的解析式;
(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车刹车距离分别为12米和10.5米,又知乙车刹车距离(米)与速度
(千米/时)满足函数
,请你就两车速度方面分析相撞原因.
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,已知∆ABC:
(1)作出∆ABC关于点O成中心对称的图形∆A1B1C1,并写出点B对应点B1的坐标;
(2)作出把∆ABC绕点A逆时针旋转90°后的图形∆AB2C2.写出点C对应点C2的坐标.
解方程:3(x+2)2=x+2
如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,
)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;
(3)求∆PAC为直角三角形时点P的坐标.
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围;
(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与轴交于点C,连接BA、BC,求∆ABC的面积.