如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)按照画三视图的要求画出该多面体的俯视图;
(2)在所给直观图中连接BC′,求证:BC′∥面EFG.
已知椭圆C的焦点F1(-
,0)和F2(
,0),长轴长6,设直线
交椭圆C于A、B两点,求线段AB的中点坐标。(8分)
设椭圆方程为
=1,求点M(0,1)的直线l交椭圆于点A、B,O为坐标原点,点P满足
,当l绕点M旋转时,求动点P的轨迹方程.
如图,已知椭圆C:
,经过椭圆C的右焦点F且斜率为k(k≠0)的直线l交椭圆G于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.
(1)是否存在k,使对任意m>0,总有
成立?若存在,求出所有k的值;
(2)若
,求实数k的取值范围.
已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点
的切线方程为
为常数).
(I)求抛物线方程;
(II)斜率为
的直线PA与抛物线的另一交点为A,斜率为
的直线PB与抛物线的另一交点为B(A、B两点不同),且满足
,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当
时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.
设椭圆
的左、右焦点分别为
、
,A是椭圆C上的一点,且
,坐标原点O到直线
的距离为
.
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点
,较y轴于点M,若
,求直线l的方程.