设函数,其中
.
(1)若,求
在
的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数
的取值范围;
(3)是否存在最小的正整数,使得当
时,不等式
恒成立.
(本小题满分12分)已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围.
(本小题满分12分)已知函数f(x)=,其中a , b , c是以d为公差的等差数列,且a>0,d>0.设
[1-
]上,
,在
,将点
A, B, C,
(Ⅰ)求
(II)若⊿ABC有一边平行于x轴,且面积为,求a ,d的值.
(本小题满分12分)设函数其中
(Ⅰ)求的单调区间;
(Ⅱ) 讨论的极值.
(本小题满分12分) 已知a∈R,求函数f(x)=x2eax的单调区间.
(本小题满分10分)一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?