已知函数,且当
时,
的最小值为2.
(1)求的值,并求
的单调增区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的
倍,再把所得图象向右平移
个单位,得到函数
,求方程
在区间
上的所有根之和.
已知函数满足对任意实数
都有
成立,且当
时,
,
.
(1)求的值;
(2)判断在
上的单调性,并证明;
(3)若对于任意给定的正实数,总能找到一个正实数
,使得当
时,
,则称函数
在
处连续。试证明:
在
处连续.
已知函数,
.
(1)若且
,试讨论
的单调性;
(2)若对,总
使得
成立,求实数
的取值范围.
设抛物线的焦点为
,其准线与
轴的交点为
,过
点的直线
交抛物线于
两点.
(1)若直线的斜率为
,求证:
;
(2)设直线的斜率分别为
,求
的值.
在数列中,
(
).
(1)求的值;
(2)是否存在常数,使得数列
是一个等差数列?若存在,求
的值及
的通项公式;若不存在,请说明理由.